Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Environ Manage ; 357: 120766, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38565032

ABSTRACT

Biofouling presents hazards to a variety of freshwater and marine underwater infrastructures and is one of the direct causes of species invasion. These negative impacts provide a unified goal for both industry practitioners and researchers: the development of novel antifouling materials to prevent the adhesion of biofouling. The prohibition of tributyltin (TBT) by the International Maritime Organization (IMO) in 2001 propelled the research and development of new antifouling materials. However, the evaluation process and framework for these materials remain incomplete and unsystematic. This mini-review starts with the classification and principles of new antifouling materials, discussing and summarizing the methods for assessing their biofouling resistance. The paper also compiles the relevant regulations and environmental requirements from different countries necessary for developing new antifouling materials with commercial potential. It concludes by highlighting the current challenges in antifouling material development and future outlooks. Systematic evaluation of newly developed antifouling materials can lead to the emergence of more genuinely applicable solutions, transitioning from merely laboratory products to materials that can be effectively used in real-world applications.


Subject(s)
Biofouling , Biofouling/prevention & control , Fresh Water , Industry
2.
Opt Express ; 32(5): 7513-7519, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439429

ABSTRACT

Tm,Ho:CaYLuAlO4 (Tm,Ho:CALYLO) crystal has wide emission spectra both for π-polarization and σ-polarization, showing significant potential for the generation of ultrashort pulses. Here, a widely tunable and passively mode-locked laser operation based on Tm,Ho:CALYLO crystal under two polarizations was demonstrated for what we believe to be the first time ever. For π-polarization, a maximum output power of 1.52 W and a tuning range of 255.3 nm were achieved in the continuous wave (CW) regime. In the mode-locked regime, a pulse duration of 68 fs and an average output power of 228 mW were achieved upon GaSb-based semiconductor saturable absorber mirror (SESAM). As for σ-polarization, a broader tuning range of 267.1 nm was realized, leading to the shorter pulse duration of 58 fs at 79.7 MHz repetition rate.

3.
Ther Adv Med Oncol ; 16: 17588359231225036, 2024.
Article in English | MEDLINE | ID: mdl-38420602

ABSTRACT

Background: Immunotherapy is an emerging antitumor therapy that can improve the survival of patients with advanced non-small-cell lung cancer (NSCLC). However, only about 20% of NSCLC patients can benefit from this treatment. At present, whether patients with driving gene-positive NSCLC can benefit from immunotherapy is one of the hot issues. Therefore, we conducted a meta-analysis to evaluate the efficacy of immunotherapy in patients with oncogene-driven NSCLC and concluded the efficacy of altered subtypes. Methods: A literature search was performed using PubMed, Web of Science, and Cochrane databases. The primary endpoints included the objective response rate (ORR), median progression-free survival (mPFS), and median overall survival (mOS) in patients with oncogene-driven NSCLC. Results: In all, 86 studies involving 4524 patients with oncogene-driven NSCLC were included in this meta-analysis. The pooled ORRs in clinical trials treated with monoimmunotherapy of EGFR, ALK, and KRAS alteration were 6%, 0%, and 23%, respectively. In retrospective studies, the pooled ORRs of EGFR, ALK, KRAS, BRAF, MET, HER2, RET, and ROS1 alteration were 8%, 3%, 28%, 24%, 23%, 14%, 7%, and 8%, respectively. Among them, the pooled ORRs of KRAS non-G12C mutation, KRAS G12C mutation, BRAF V600E mutation, BRAF non-V600E mutation, MET-exon 14 skipping, and MET-amplification were 33% 40%, 20%, 34%, 17%, and 60%, respectively. In addition, the pooled mPFS rates of EGFR, KRAS, MET, HER2, and RET alteration were 2.77, 3.24, 2.48, 2.31, and 2.68 months, while the pooled mOS rates of EGFR and KRAS alteration were 9.98 and 12.29 months, respectively. In prospective data concerning EGFR mutation, the pooled ORR and mPFS treated with chemo-immunotherapy (IC) reached 38% and 6.20 months, while 58% and 8.48 months with chemo-immunotherapy plus anti-angiogenesis therapy (ICA). Moreover, the pooled mPFS and mOS of monoimmunotherapy was 2.33 months and 12.43 months. Conclusions: EGFR-, ALK-, HER2-, RET-, and ROS1-altered NSCLC patients have poor reactivity to monoimmunotherapy but the efficacy of immune-based combined therapy is significantly improved. KRAS G12C mutation, BRAF non-V600E mutation, and MET amplification have better responses to immunotherapy, and more prospective studies are needed for further research.


Efficacy of immunotherapy in patients with oncogene-driven non-small cell lung cancer: a systematic review and meta analysis Immunotherapy is an emerging antitumor therapy that can improve the survival of patients with advanced NSCLC. However, only about 20% of NSCLC patients can benefit from this treatment. At present, whether patients with driving gene positive NSCLC can benefit from immunotherapy is one of the hot issues. Therefore, we conducted a meta-analysis to evaluate the efficacy of immunotherapy in patients with oncogene-driven NSCLC, and concluded the efficacy of altered subtypes. 86 studies involving 4524 patients with oncogene-driven NSCLC were included in this meta-analysis. The pooled ORR in clinical trials treated with monoimmunotherapy was of EGFR, ALK and KRAS alteration was 6%, 0%, and 23%, respectively. While in retrospective studies, the pooled ORR of EGFR, ALK, KRAS, BRAF, MET, HER2, RET and ROS1 alteration was 8%, 3%, 28%, 24%, 23%, 14%, 7% and 8%, respectively. Among them, the pooled ORR of KRAS non-G12C mutation, KRAS G12C mutation, BRAF V600E mutation, BRAF non-V600E mutation, MET-exon 14 skipping and MET-amplification was 33% 40%, 20%, 34%, 17% and 60%, respectively. Additionally, the pooled mPFS of EGFR, KRAS, MET, HER2 and RET alteration was 2.77, 3.24, 2.48, 2.31 and 2.68 months, while the pooled mOS of EGFR and KRAS alteration was 9.98 and 12.29 months. In prospective data concerning EGFR mutation, the pooled ORR and mPFS treated with chemo-immunotherapy (IC) was reached 38% and 6.20 months, while 58% and 8.48 months with chemo-immunotherapy plus anti-angiogenesis therapy (ICA). Moreover, the pooled mPFS and mOS of monoimmunotherapy was 2.33 months and 12.43 months. EGFR, ALK, HER2, RET and ROS1-altered NSCLC patients have poor reactivity to monoimmunotherapy, but the efficacy of immune-based combined therapy is significantly improved. KRAS G12C mutation, BRAF non-V600E mutation and MET amplification have better response to immunotherapy, and more prospective studies are needed for further research.

4.
Chemosphere ; 349: 140940, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101478

ABSTRACT

Microplastic (MP) and nanoplastic (NP) could cause gut microbiota alterations. Although micro/nanoplastic (MNP) degradation is attracting increasing scientific interest, the evaluation of MNP reduction in gut needs to be further investigated. This study aimed to determine whether partial reduction of polystyrene MNP in gut could affect the immunity, gut microbiota and metabolome of mice. Serum eotaxin/CCL11 was at a lower level in the mice exposed to 200 µg and 500 µg NP (i.e., 2NP and 5NP groups, respectively) compared to those exposed to 500 µg MP (i.e., 5 MP group), while serum IL-2 and IL-4 were both greater in the 5NP group compared to the 5 MP group. The gut bacterial alpha diversity, fungal diversity and evenness were all similar among the MNP and control groups. However, the gut fungal richness was greater in both the 5NP and 5 MP groups compared to the control group. The gut bacterial and fungal compositions were both different between the MNP and control groups. Multiple gut bacteria and fungi showed different levels between the 2NP and 5NP groups, as well as between the 2NP and 5 MP groups. Increased Staphylococcus and decreased Glomus were determined in the 2NP group compared to both the 5NP and 5 MP groups. A Lactobacillus phylotype was found as the sole gatekeeper in the bacterial network of the 2NP group, while a Bifidobacterium phylotype contributed most to the stability of the bacterial networks of both the 5NP and 5 MP groups. Multiple differential gut metabolic pathways were found between the 2NP and 5NP/5 MP groups, and mTOR signaling pathway was largely upregulated in the 2NP group compared to both the 5NP and 5 MP groups. The relevant results could help with the evaluation of partial reduction of MNP in gut.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Polystyrenes/pharmacology , Microplastics , Plastics/pharmacology , Metabolome , Bacteria
5.
Opt Lett ; 48(17): 4544-4547, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656549

ABSTRACT

We report on the spectral properties and laser performances of a novel, to the best of our knowledge, Tm,Ho:CaY0.9Lu0.1AlO4 (Tm,Ho:CYLA) crystal. The polarized absorption spectra, luminescence spectra, and fluorescence lifetime are systematically investigated, presenting a broad and smooth luminescence band. Furthermore, a maximum continuous wave (CW) laser output power of 0.51 W at 2092 nm is obtained under an absorbed pump power of 2.89 W, corresponding to a slope efficiency of 20.4%. The beam quality factors (M2) are measured to be 1.04 in both the x and y axes. A tuning range of 123.4 nm, from 2017.8 nm to 2141.2 nm, is achieved in the CW regime by using a birefringent filter (BF). A stable passively Q switched Tm,Ho:CYLA laser employing Cr2+:ZnSe as a saturable absorber (SA) is realized for the first time, delivering the shortest pulse width of 560 ns with a transmittance of 1%. The results indicate that the Tm,Ho:CYLA crystal is an excellent laser medium for generating high-efficiency laser at ∼2 µm and has a potential in ultrafast laser generation.

6.
Lung Cancer ; 183: 107315, 2023 09.
Article in English | MEDLINE | ID: mdl-37517117

ABSTRACT

BACKGROUND: Although the treatment of ERBB2-altered non-small cell lung cancer (NSCLC) has been studied for many years, there are no comprehensive studies to evaluate the benefits of various therapies as first-line treatment. Through the development of immunotherapy, more and more different combination treatments were applicated in clinical practice, therefore, we conducted a multicenter retrospective study to evaluate the efficacy of different treatments. METHODS: We enrolled patients with ERBB2-altered NSCLC who had undergone at least one-line systemic anticancer treatment to evaluate the efficacy of first-line chemotherapy alone (Chemo), anti-ERBB2 tyrosine kinase inhibitor (TKI), chemotherapy plus immunotherapy (Chemo + Immuno), chemotherapy plus anti-angiogenesis therapy (Chemo + Antiangio) and chemotherapy combined with immunotherapy and anti-angiogenesis therapy (Chemo + Immuno + Antiangio). The clinical outcomes included objective response rate (ORR), disease control rate (DCR), median progression-free survival (mPFS), one-year and three-year survival rate. RESULTS: We enroll 36 patients harboring ERBB2 mutation and 29 with ERBB2 amplification. The overall ORR was 30.8%, DCR was 69.2% and mPFS was 5.7 months. Chemo + Immuno and Chemo + Antiangio both achieved longer mPFS than TKI (7.8 vs 3.6 months, HR: 0.24, 95 %CI: 0.09-0.64, P = 0.002; 5.9 vs 3.6 months, HR: 0.36, 95 %CI: 0.15-0.88, P = 0.019; respectively), while there was no significant difference in mPFS between Chemo + Immuno or Chemo + Antiangio and Chemo (both P > 0.05), the mPFS of the first two was longer. For ERBB2-mutant patients, the mPFS was 5.9 months, and Chemo + Immuno and Chemo + Antiangio both achieved longer mPFS than TKI (12.9 vs 2.9 months, HR: 0.15, 95 %CI: 0.03-0.68, P = 0.005; 7.1 vs 2.9 months, HR: 0.50, 95 %CI: 0.29-0.88, P = 0.009, respectively). In the same therapies, patients with ERBB2 mutation or ERBB2 amplification showed no statistical significance in PFS (both P > 0.05). CONCLUSIONS: In the first-line treatment of ERBB2-altered NSCLC, chemotherapy combined with immunotherapy or anti-angiogenesis therapy may have greater survival benefits than ERBB2-target therapy, but the efficacy may not be better than that of chemotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Retrospective Studies , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/adverse effects , Mutation
7.
Zhongguo Fei Ai Za Zhi ; 26(6): 429-438, 2023 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-37488080

ABSTRACT

BACKGROUND: Studies have shown that the incidence and severity of corona virus disease 2019 (COVID-19) in patients with lung cancer are higher than those in healthy people. At present, the main anti-tumor treatments for lung cancer include surgery, immunotherapy, chemotherapy, radiotherapy, targeted therapy and anti-angiogenesis therapy. While the effects of different anti-tumor treatments on the occurrence and severity of COVID-19 pneumonia are not uniform. Therefore, we aimed to describe clinical characteristics and antitumor therapy of patients with lung cancer and COVID-19 pneumonia, and examined risk factors for severity in this population. METHODS: From December 1, 2022 to February 15, 2023, a retrospective study was conducted in 217 patients diagnosed with COVID-19 and pathologically confirmed lung cancer in the Jinling Hospital. We collected data about patients' clinical features, antitumor treatment regimen within 6 months, and the diagnosis and treatment of COVID-19. Risk factors for occurrence and severity of COVID-19 pneumonia were identified by univariable and multivariable Logistic regression models. RESULTS: (1) Among the 217 patients included, 51 (23.5%) developed COVID-19 pneumonia, of which 42 (82.4%) were classified as medium and 9 (17.6%) were classified as severe; (2) Univariate and multivariate analysis revealed overweight (OR=2.405, 95%CI: 1.095-5.286) and intrapulmonary focal radiotherapy (OR=2.977, 95%CI: 1.071-8.274) are risk factors for increasing occurrence of COVID-19 pneumonia, while other therapies are not; (3) Chronic obstructive pulmonary disease (COPD) history (OR=7.600, 95%CI: 1.430-40.387) was more likely to develop severe pneumonia and anti-tumor therapies such as intrapulmonary focal radiotherapy, chemotherapy, targeted therapy and immunotherapy did not increase severity. CONCLUSIONS: Intrapulmonary focal radiation therapy within 6 months increased the incidence of COVID-19 pneumonia, but did not increase the severity. However, there was no safety concern for chemotherapy, targeted therapy, surgery and immunotherapy.


Subject(s)
COVID-19 , Lung Neoplasms , Pneumonia , Humans , Retrospective Studies , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Incidence , Pneumonia/etiology
8.
Transl Lung Cancer Res ; 12(4): 895-908, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37197619

ABSTRACT

Background and Objective: Lung cancer is the most fatal malignant tumor in the world. Since the discovery of driver genes, targeted therapy has been demonstrated to be superior to traditional chemotherapy and has revolutionized the therapeutic landscape of non-small cell lung cancer (NSCLC). The remarkable success of tyrosine kinase inhibitors (TKIs) in patients with epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusions has shifted the treatment from platinum-based combination chemotherapy to targeted therapy. Although the incidence rate of gene fusion is low in NSCLC, it is of great significance in advanced refractory patients. However, the clinical characteristics and the latest treatment progress of patients with gene fusions in lung cancer have not been thoroughly explored. The objective of this narrative review was to summarize the latest research progress of targeted therapy for gene fusion variants in NSCLC to improve understanding for clinicians. Methods: We conducted a search of PubMed database and American Society of Clinical Oncology (ASCO), the European Society for Medical Oncology (ESMO), and World Conference on Lung Cancer (WCLC) abstracts meeting proceedings from 1 January 2005 to 31 August 2022 with the following keywords "non-small cell lung cancer", "fusion", "rearrangement", "targeted therapy" and "tyrosine kinase inhibitor". Key Content and Findings: We comprehensively listed the targeted therapy of various gene fusions in NSCLC. Fusions of ALK, ROS proto-oncogene 1 (ROS1), and rearranged during transfection proto-oncogene (RET) are relatively more common than others (NTRK fusions, NRG1 fusions, FGFR fusions, etc.). Among ALK-rearranged NSCLC patients treated with crizotinib, alectinib, brigatinib, or ensartinib, the Asian population exhibited a slightly better effect than the non-Asian population in first-line therapy. It was revealed that ceritinib may have a slightly better effect in the non-Asian ALK-rearranged population as first-line therapy. The effect of crizotinib might be similar in Asians and non-Asians with ROS1-fusion-positive NSCLC in first-line therapy. The non-Asian population were shown to be more likely to be treated with selpercatinib and pralsetinib for RET-rearranged NSCLC than the Asian population. Conclusions: The present report summarizes the current state of fusion gene research and the associated therapeutic methods to improve understanding for clinicians, but how to better overcome drug resistance remains a problem that needs to be explored.

9.
J Hazard Mater ; 441: 129903, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36087528

ABSTRACT

Microplastics (MP) and nanoplastics (NP) exist in the disposable plastic take-away containers. This study aims to determine the gut and oral microbiota alterations in the individuals frequently and occasionally consuming take-away food in disposable plastic containers (TFDPC), and explore the effect of micro/nanoplastics (MNP) reduction on gut microbiota in mice. TFDPC consumption are associated with greater presences of gastrointestinal dysfunction and cough. Both occasional and frequent consumers have altered gut and oral microbiota, and their gut diversity and evenness are greater than those of non-TFDPC consuming cohort. Multiple gut and oral bacteria are associated with TFDPC consumers, among which intestinal Collinsella and oral Thiobacillus are most associated with the frequent consumers, while intestinal Faecalibacterium is most associated with the occasional consumers. Although some gut bacteria associated with the mice treated with 500 µg NP and 500 µg MP are decreased in the mice treated with 200 µg NP, the gut microbiota of the three MNP groups are all different from the control group. This study demonstrates that TFDPC induces gut and oral microbiota alterations in the consumers, and partial reduction of the size and amount of MNP cannot rectify the MNP-induced gut microbial dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Dysbiosis/chemically induced , Mice , Microplastics , Plastics/toxicity
10.
Chemosphere ; 310: 136764, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36216111

ABSTRACT

Microplastics (MP) and nanoplastics (NP) have been found in multiple environments and creatures. However, their effects on the airway microbiota still remain poorly understood. In this study, a series of bioinformatic and statistical analyses were carried out to explore the influence of airborne MP and NP on the nasal and lung microbiota in mice. Both MP and NP were capable of inducing nasal microbial dysbiosis, and MP had a stronger influence on the lung microbiota than NP. Multiple nasal and lung bacteria were associated with MP and NP groups, among which nasal Staphylococcus and lung Roseburia were most associated with MP group, while nasal Prevotella and lung unclassified_Muribaculaceae were most associated with NP group. The nasal Staphylococcus, lung Roseburia, lung Eggerthella and lung Corynebacterium were associated with both MP and NP groups, which were potential biomarkers of micro/nanoplastics-induced airway dysbiosis. SAR11_Clade_Ia and SAR11_Clade_II were associated with both nasal and lung microbiota in MP group, while no such bacterium was determined in NP group. The relevant results suggest that both airborne MP and NP could induce nasal and lung microbial dysbiosis, and the relevant preventative and curable strategies deserve further investigations.


Subject(s)
Dysbiosis , Microplastics , Mice , Animals , Dysbiosis/chemically induced , Microplastics/toxicity , Polystyrenes , Plastics/toxicity , Lung
11.
J Clin Med ; 11(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362767

ABSTRACT

Background: Dynamic needle-tip positioning (DNTP) was shown to improve arterial cannulation efficiency with fewer complications than conventional palpation and ultrasound methods by some studies. However, this is still controversial, and we performed this meta-analysis to comprehensively assess its value in arterial cannulation. Methods: A literature search of randomized controlled trials was conducted, and 11 studies were finally included. Efficiency outcomes (first-attempt success, overall success, and total cannulation time) and complications (hematoma, thrombosis, posterior wall puncture, and vasospasm) were separately analyzed. Subgroup analyses in different populations under cannulation were also performed. Results: DNTP was associated with increased first-attempt success (pooled RR = 1.792, p < 0.001), overall success (pooled RR = 1.368, p = 0.001), and decreased cannulation time (pooled SMD = −1.758, p = 0.001) than palpation. DNTP gained even more advantage in small children and infants. No significant difference in these outcomes between DNTP and conventional ultrasound method was detected. Fewer hematoma occurred in DNTP than palpation (pooled RR = 0.265, p < 0.001) or traditional ultrasound (pooled RR = 0.348, p < 0.001). DNPT was also associated with fewer posterior wall punctures (pooled RR = 0.495, p = 0.001) and vasospasm (pooled RR = 0.267, p = 0.007) than traditional ultrasound. Conclusions: DNTP was a better choice in artery cannulation than conventional palpation and ultrasound method, especially in small children and infants.

12.
Nanomaterials (Basel) ; 12(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364542

ABSTRACT

Terahertz (THz) meta-devices are considered to be a promising framework for constructing integrated photonic circuitry, which is significant for processing the upsurge of data brought about by next-generation telecommunications. However, present active metasurfaces are typically restricted by a single external driving field, a single modulated frequency, fixed switching speed, and deficiency in logical operation functions which prevents devices from further practical applications. Here, to overcome these limitations, we propose a hybrid THz metasurface consisting of vanadium dioxide (VO2) and germanium (Ge) that enables electrical and optical tuning methods individually or simultaneously and theoretically investigate its performance. Each of the two materials is arranged in the meta-atom to dominate the resonance strength of toroidal or magnetic dipoles. Controlled by either or both of the external excitations, the device can switch on or off at four different frequencies, possessing two temporal degrees of freedom in terms of manipulation when considering the nonvolatility of VO2 and ultrafast photogenerated carriers of Ge. Furthermore, the "AND" and "OR" logic operations are respectively achieved at two adjacent frequency bands by weighing normalized transmission amplitude. This work may provide an auspicious paradigm of THz components, such as dynamic filters, multiband switches, and logical modulators, potentially promoting the design and implementation of multifunctional electro-optical devices in future THz computing and communication.

13.
Front Cell Infect Microbiol ; 12: 999418, 2022.
Article in English | MEDLINE | ID: mdl-36147601

ABSTRACT

Background: Spontaneous bacterial peritonitis (SBP) is a severe infection in cirrhotic patients that requires early diagnosis to improve the long-term outcome. Alterations in the gut microbiota have been shown to correlate with the development and progression of liver cirrhosis. However, the relationship between SBP and gut microbiota remains unknown. Methods: In this study, we applied 16S rRNA pyrosequencing of feces to ascertain possible links between the gut microbiota and SBP. We recruited 30 SBP patients, 30 decompensated cirrhotic patients without SBP (NSBP) and 30 healthy controls. Metagenomic functional prediction of bacterial taxa was achieved using PICRUSt. Results: The composition of the gut microbiota in the SBP patients differed remarkably from that in the NSBP patients and healthy individuals. The microbial richness was significantly decreased, while the diversity was increased in the SBP patients. Thirty-four bacterial taxa containing 15 species, mainly pathogens such as Klebsiella pneumoniae, Serratia marcescens and Prevotella oris, were dominant in the SBP group, while 42 bacterial taxa containing 16 species, especially beneficial species such as Faecalibacterium prausnitzii, Methanobrevibacter smithii and Lactobacillus reuteri, were enriched in the NSBP group. Notably, we found that 18 gene functions of gut microbiota were different between SBP patients and NSBP patients, which were associated with energy metabolism and functional substance metabolism. Five optimal microbial markers were determined using a random forest model, and the combination of Lactobacillus reuteri, Rothia mucilaginosa, Serratia marcescens, Ruminococcus callidus and Neisseria mucosa achieved an area under the curve (AUC) value of 0.8383 to distinguish SBP from decompensated cirrhosis. Conclusions: We described the obvious dysbiosis of gut microbiota in SBP patients and demonstrated the potential of microbial markers as noninvasive diagnostic tools for SBP at an early stage.


Subject(s)
Gastrointestinal Microbiome , Limosilactobacillus reuteri , Peritonitis , Bacteria/genetics , Dysbiosis/diagnosis , Dysbiosis/microbiology , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Peritonitis/diagnosis , RNA, Ribosomal, 16S/genetics
15.
Appl Microbiol Biotechnol ; 106(9-10): 3735-3749, 2022 May.
Article in English | MEDLINE | ID: mdl-35554627

ABSTRACT

The depletion of Bacteroides in the gut is closely correlated with the progression of alcoholic liver disease (ALD). This study aimed to identify Bacteroides strains with protective effects against ALD and evaluate the synergistic effects of Bacteroides and pectin in this disease. Mice were fed Lieber-DeCarli alcohol diet to establish an experimental ALD model and pre-treated with 4 Bacteroides strains. The severity of the liver injury, hepatic steatosis, and inflammation was evaluated through histological and biochemical assays. We found that Bacteroides fragilis ATCC25285 had the best protective effects against ALD strains by alleviating both ethanol-induced liver injury and steatosis. B. fragilis ATCC25285 could counteract inflammatory reactions in ALD by producing short-chain fat acids (SCFAs) and enhancing the intestinal barrier. In the subsequent experiment, the synbiotic combination of B. fragilis ATCC25285 and pectin was evaluated and the underlying mechanisms were investigated by metabolomic and microbiome analyses. The combination elicited superior anti-ALD effects than the individual agents used alone. The synergistic effects of B. fragilis ATCC25285 and pectin were driven by modulating gut microbiota, improving tryptophan metabolism, and regulating intestinal immune function. Based on our findings, the combination of B. fragilis ATCC25285 and pectin can be considered a potential treatment for ALD. KEY POINTS: • B. fragilis ATCC25285 was identified as a protective Bacteroides strain against ALD. • The synbiotic combination of B. fragilis and pectin has better anti-ALD effects. • The synbiotic combination modulates gut microbiota and tryptophan metabolism.


Subject(s)
Bacteroides , Liver Diseases, Alcoholic , Animals , Ethanol/metabolism , Inflammation/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/pathology , Liver Diseases, Alcoholic/prevention & control , Mice , Mice, Inbred C57BL , Pectins/metabolism , Tryptophan/metabolism
16.
J Appl Microbiol ; 133(2): 375-384, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35365858

ABSTRACT

AIMS: Liver damage has caused great illness in human beings. Bifidobacterium catenulatum LI10 has been determined with protective effect against D-galactosamine-induced liver damage. However, due to the sample limitation, the individual difference in its protective effect was not determined. The current study was designed to characterize the gut microbiota of LI10-pretreated rats with lower levels of liver damage. METHODS AND RESULTS: A series of experiments and bioinformatic analyses were carried out. Two rat cohorts with different levels of liver damage were determined, that is, Non-Severe and Severe cohorts. Six out of the seven measured liver function variables were lower in the Non-Severe cohort, while four cytokine variables also yielded differences between the two cohorts. The Non-Severe and Severe cohorts were determined with distinct gut microbiota, among which ASV14_Parabacteroides and ASV7_Bacteroides were most associated with Non-Severe and Severe cohorts, respectively. Five phylotypes were determined as structural gatekeepers in the microbiota network of Non-Severe cohort, ASV135_Lachnospiraceae_NK4A136 of which contributed most to the stability of the network. CONCLUSIONS: The relevant findings suggest that some gut bacteria could benefit the protective effect of LI10 on lowering the severity of rat liver damage. SIGNIFICANCE AND IMPACT OF THE STUDY: The bacteria benefiting the protective effects of potential probiotics could be further investigated for future clinical application.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Bifidobacterium , Galactosamine/pharmacology , Humans , Liver , Probiotics/therapeutic use , Rats
17.
Front Microbiol ; 13: 1103998, 2022.
Article in English | MEDLINE | ID: mdl-36687651

ABSTRACT

Introduction: Acute liver failure (ALF) is a clinical condition with many causes, fast progression, and a poor prognosis. Previous research has indicated that microbial factors have a role in ALF, but a clear picture has yet to emerge. Methods: To investigate the specific involvement of microbial metabolites in ALF development, we pretreated D-GalN/LPS-induced ALF mice with indole derivatives, an influential class of gut microbial metabolites. Results: Contrary to their typical role as anti-inflammatory agents in the host, indole-3-acetic acid (IAA), indole-3-lactic acid (ILA), and indolepropionic acid (IPA) gavage sensitize mice to D-GalN/LPS-induced-ALF with a rapid rise in serum transaminases and histologic lesion. For a clearer picture, we performed comprehensive analysis for the IAA therapy. IAA markedly amplified inflammatory response and cellular damage. The transcriptome analysis indicated the participation of the TNF-α/NF-κB signaling pathway. The structure of gut microbiota in ileum and the expression of Toll-like receptor 2 (Tlr2) in the liver were also significantly changed. Discussion: In conclusion, IAA pretreatment can exacerbate D-GalN/LPS-induced ALF via probable Tlr2/NF-κB pathway involvement and ileac dysbiosis characterized by enriched gram-positive genus with potential pathogenesis. Microbial metabolites IAA may aggravate individual susceptibility to D-GalN/LPS-induced ALF. Further investigation of the underlying mechanism is needed, and intervention with indole derivatives and related commensal species should be undertaken with caution.

18.
Eur J Hosp Pharm ; 29(e1): e91-e94, 2022 03.
Article in English | MEDLINE | ID: mdl-33558219

ABSTRACT

Piperacillin-tazobactam is a broad-spectrum antimicrobial agent that is commonly used in clinical practice. The development of delayed drug hypersensitivity reaction (DHR) has been reported in several cases previously. Here we describe an unusual case of non-immediate DHR due to a prolonged course of piperacillin-tazobactam. We report a 22-year-old man who developed fever, eosinophilia, thrombocytopenia and elevated hepatic enzymes following 17 days of piperacillin-tazobactam for methicillin-sensitive Staphylococcus aureus (MSSA) pneumonia. These adverse reactions were reversed immediately after antibiotic cessation. Our case highlights that clinicians should be aware of delayed adverse effects in patients receiving long-term piperacillin-tazobactam treatment.


Subject(s)
Eosinophilia , Thrombocytopenia , Adult , Eosinophilia/chemically induced , Eosinophilia/diagnosis , Eosinophilia/drug therapy , Humans , Liver , Male , Piperacillin/adverse effects , Piperacillin, Tazobactam Drug Combination/adverse effects , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Thrombocytopenia/drug therapy , Young Adult
19.
Front Vet Sci ; 8: 709046, 2021.
Article in English | MEDLINE | ID: mdl-34712720

ABSTRACT

Artemisia annua (AAH) is traditionally used as an anti-malarial, expectorant and antipyretic Chinese medicine. The aim of this study was to explore the therapeutic effect of Qinghao Powder (QHP) on chicken coccidiosis, evaluate the safe dosage of QHP, and provide test basis for clinical medication. High-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC) were used to detect artemisinin in Qinghao Powder (QHP) for quality control. The level of artemisinin in QHP was 81.03 mg/g. A total of 210 chicks (14 days of age) were divided randomly into seven groups: three QHP treatments (0.15, 0.30, and 0.60 g/kg), a toltrazuril control (1.00 mL/L), a sulfachloropyrazine sodium control (SSC, 0.30 g/L), an E. tenella-infected control, and a healthy control group. All the groups were inoculated orally with 7 × 104 E. tenella oocysts except for the healthy control group. After seven days of administration, compared with the infected control group, chicks which were administered QHP, SS, and toltrazuril showed less bloody feces, oocyst output, and cecal lesions, and the protection rates were improved. The maximum rBWG and ACI were found in the SS-medicated group, followed by the groups medicated with 0.60 and 0.30 g/kg QHP. Therefore, a 0.30 g/kg dose level of QHP in the feed was selected as the recommend dose (RD) in the target animal safety test, in which 80 broiler chicks (14 days of age) were randomly divided into four major groups (I-healthy control group; II-1× RD; III-3× RD; IV-6× RD), with each group subdivided into two subgroups (A and B) consisting of 10 chicks each. After 7-day (for sub-group A) or 14-day (for sub-group B) administration, compared with the healthy control, treatment-related changes in BWG, feed conversion ratio (FCR), relative organ weight (ROW) of the liver, WBC counts, and levels of RBC, HGB, ALT, AST, and TBIL were detected in the 3× and 6× RD groups. No differences were noted in necropsy for all doses, and histopathological examinations exhibited no QHP-associated signs of toxicity or abnormalities in the liver or kidney. The findings suggest that QHP at a dose of 0.30 g/kg feed would be appropriate for therapy and intermittent treatment of E. tenella-infected chicks, the dosage in clinical applications should be set according to the recommended dose to ensure animal safety.

20.
Polymers (Basel) ; 13(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203219

ABSTRACT

All-optical devices have a great potential in optical communication systems. As a new material, graphene has attracted great attention in the field of optics due to its unique properties. We propose a graphene-assisted polymer optically controlled thermo-optic switch, based on the Ex01 mode, which can reduce the absorption loss of graphene. Graphene absorbs 980 nm pump light, and uses the heat generated by ohmic heating to switch on and off the signal light at 1550 nm. The simulation results show that, when the graphene is in the right position, we can obtain the power consumption of 9.5 mW, the propagation loss of 0.01 dB/cm, and the switching time of 127 µs (rise)/125 µs (fall). The switching time can be improved to 106 µs (rise) and 102 µs (fall) with silicon substrate. Compared with an all-fiber switch, our model has lower power consumption and lower propagation loss. The proposed switch is suitable for optically controlled fields with low loss and full polarization. Due to the low cost and easy integration of polymer materials, the device will play an important role in the fields of all-optical signal processing and silicon-based hybrid integrated photonic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...